
Note 4. Lemma 8.2 Lie groups, 2015

The proof of this lemma is a bit hard to read. Here are some extra details.

Lemma 8.2. Let X,Y ∈ g then

d(exp)X(Y ) = d(ℓexpX)e

(
∫ 1

0

Ad(exp(−sX))Y ds

)

,

where the integral is taken of a g-valued function.

Proof. As in the notes we define F (X,Y ) = d(ℓexpX)−1
e ◦ d(exp)X(Y ) ∈ g. The

statement of the lemma is then

(1) F (X,Y ) =

∫ 1

0

Ad(exp(−sX))Y ds.

We will prove the identity (1) in g by applying both sides to an arbitrary smooth
function ϕ ∈ C∞(G). More precisely we will show that

(2) dϕe (F (X,Y )) = dϕe

(
∫ 1

0

Ad(exp(−sX))Y ds

)

for all such functions, which clearly then implies (1).
Note that by definition of vector valued integration the linear functional dϕe

passes under the integral sign on the right. Hence

(3) dϕe (F (X,Y )) =

∫ 1

0

dϕe (Ad(exp(−sX))Y ) ds

is an equivalent form of (2).
As mentioned in the notes we find from the chain rule that

F (X,Y ) =
∂

∂t

∣

∣

∣

t=0
exp(−X) exp(X + tY ) ∈ TeG = g.

For the proof of (3) we let

g(s, t) = exp(−sX) exp(s(X + tY )) ∈ G

for s, t ∈ R, and note that

F (sX, sY ) =
∂

∂t

∣

∣

∣

t=0
g(s, t).

Then by the chain rule

dϕe(F (sX, sY )) =
∂

∂t

∣

∣

∣

t=0
ϕ(g(s, t)).



The reason for introducing the extra variable s is that we want to exploit the
fundamental theorem of calculus to write F (X,Y ) as an integral. Since F (0, 0) = 0
we find

(4) dϕe(F (X,Y )) =

∫ 1

0

∂

∂s
dϕe(F (sX, sY )) ds.

Now

(5)
∂

∂s
dϕe(F (sX, sY )) =

∂

∂s

∂

∂t

∣

∣

∣

t=0
ϕ(g(s, t)) =

∂

∂t

∣

∣

∣

t=0

∂

∂s
ϕ(g(s, t)).

by interchanging partial derivatives of a smooth real valued function.
Note that

g(s+ u, t) = exp(−sX)g(u, t) exp(s(X + tY ))

for s, t, u ∈ R and hence

ϕ(g(s+ u, t)) = (ϕ ◦ lexp(−sX) ◦ rexp(s(X+tY )))(g(u, t)).

Since ∂

∂s
ϕ(g(s, t)) = ∂

∂u

∣

∣

∣

u=0
ϕ(g(s+ u, t)) it follows

∂

∂s
ϕ(g(s, t)) = d

(

ϕ ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)

e

(

∂

∂u

∣

∣

∣

u=0
g(u, t)

)

.

Now
∂

∂u

∣

∣

∣

u=0
g(u, t) = −X + (X + tY ) = tY

by Lemma 5.3, and hence

∂

∂s
ϕ(g(s, t)) = d

(

ϕ ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)

e
(tY )

= td
(

ϕ ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)

e
(Y ) .

by linearity. Let ψ(t) = d
(

ϕ ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)

e
(Y ) ∈ R, so that

∂

∂s
ϕ(g(s, t)) = tψ(t).

The expression by which we defined ψ(t) is seen to depend smoothly on t, hence
tψ(t) has derivative ψ(0) at t = 0 and thus

(6)
∂

∂t

∣

∣

∣

t=0

∂

∂s
ϕ(g(s, t)) = ψ(0)

Finally, since lexp(−sX) ◦ rexp(sX) is conjugation by exp(−sX) we obtain for t = 0

(7) ψ(0) = d
(

ϕ ◦ lexp(−sX) ◦ rexp(sX))

)

e
(Y ) = dϕe (Ad(exp(−sX))Y )

by the chain rule together with the definition of Ad(x) as the differential of conju-
gation by x.

We finish the proof of (3) by inserting (7) into (6) into (5) into (4).

HS


