The proof of this lemma is a bit hard to read. Here are some extra details.
Lemma 8.2. Let $X, Y \in \mathfrak{g}$ then

$$
d(\exp)_{X}(Y)=d\left(\ell_{\exp X}\right)_{e}\left(\int_{0}^{1} \operatorname{Ad}(\exp (-s X)) Y d s\right)
$$

where the integral is taken of a \mathfrak{g}-valued function.
Proof. As in the notes we define $F(X, Y)=d\left(\ell_{\exp X}\right)_{e}^{-1} \circ d(\exp)_{X}(Y) \in \mathfrak{g}$. The statement of the lemma is then

$$
\begin{equation*}
F(X, Y)=\int_{0}^{1} \operatorname{Ad}(\exp (-s X)) Y d s \tag{1}
\end{equation*}
$$

We will prove the identity (1) in \mathfrak{g} by applying both sides to an arbitrary smooth function $\varphi \in C^{\infty}(G)$. More precisely we will show that

$$
\begin{equation*}
d \varphi_{e}(F(X, Y))=d \varphi_{e}\left(\int_{0}^{1} \operatorname{Ad}(\exp (-s X)) Y d s\right) \tag{2}
\end{equation*}
$$

for all such functions, which clearly then implies (1).
Note that by definition of vector valued integration the linear functional $d \varphi_{e}$ passes under the integral sign on the right. Hence

$$
\begin{equation*}
d \varphi_{e}(F(X, Y))=\int_{0}^{1} d \varphi_{e}(\operatorname{Ad}(\exp (-s X)) Y) d s \tag{3}
\end{equation*}
$$

is an equivalent form of (2).
As mentioned in the notes we find from the chain rule that

$$
F(X, Y)=\left.\frac{\partial}{\partial t}\right|_{t=0} \exp (-X) \exp (X+t Y) \in T_{e} G=\mathfrak{g}
$$

For the proof of (3) we let

$$
g(s, t)=\exp (-s X) \exp (s(X+t Y)) \in G
$$

for $s, t \in \mathbb{R}$, and note that

$$
F(s X, s Y)=\left.\frac{\partial}{\partial t}\right|_{t=0} g(s, t) .
$$

Then by the chain rule

$$
d \varphi_{e}(F(s X, s Y))=\left.\frac{\partial}{\partial t}\right|_{t=0} \varphi(g(s, t)) .
$$

The reason for introducing the extra variable s is that we want to exploit the fundamental theorem of calculus to write $F(X, Y)$ as an integral. Since $F(0,0)=0$ we find

$$
\begin{equation*}
d \varphi_{e}(F(X, Y))=\int_{0}^{1} \frac{\partial}{\partial s} d \varphi_{e}(F(s X, s Y)) d s \tag{4}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{\partial}{\partial s} d \varphi_{e}(F(s X, s Y))=\left.\frac{\partial}{\partial s} \frac{\partial}{\partial t}\right|_{t=0} \varphi(g(s, t))=\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s} \varphi(g(s, t)) . \tag{5}
\end{equation*}
$$

by interchanging partial derivatives of a smooth real valued function.
Note that

$$
g(s+u, t)=\exp (-s X) g(u, t) \exp (s(X+t Y))
$$

for $s, t, u \in \mathbb{R}$ and hence

$$
\varphi(g(s+u, t))=\left(\varphi \circ l_{\exp (-s X)} \circ r_{\exp (s(X+t Y))}\right)(g(u, t)) .
$$

Since $\frac{\partial}{\partial s} \varphi(g(s, t))=\left.\frac{\partial}{\partial u}\right|_{u=0} \varphi(g(s+u, t))$ it follows

$$
\frac{\partial}{\partial s} \varphi(g(s, t))=d\left(\varphi \circ l_{\exp (-s X)} \circ r_{\exp (s(X+t Y))}\right)_{e}\left(\left.\frac{\partial}{\partial u}\right|_{u=0} g(u, t)\right)
$$

Now

$$
\left.\frac{\partial}{\partial u}\right|_{u=0} g(u, t)=-X+(X+t Y)=t Y
$$

by Lemma 5.3, and hence

$$
\begin{aligned}
\frac{\partial}{\partial s} \varphi(g(s, t)) & =d\left(\varphi \circ l_{\exp (-s X)} \circ r_{\exp (s(X+t Y))}\right)_{e}(t Y) \\
& =t d\left(\varphi \circ l_{\exp (-s X)} \circ r_{\exp (s(X+t Y))}\right)_{e}(Y)
\end{aligned}
$$

by linearity. Let $\psi(t)=d\left(\varphi \circ l_{\exp (-s X)} \circ r_{\exp (s(X+t Y))}\right)_{e}(Y) \in \mathbb{R}$, so that

$$
\frac{\partial}{\partial s} \varphi(g(s, t))=t \psi(t)
$$

The expression by which we defined $\psi(t)$ is seen to depend smoothly on t, hence $t \psi(t)$ has derivative $\psi(0)$ at $t=0$ and thus

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s} \varphi(g(s, t))=\psi(0) \tag{6}
\end{equation*}
$$

Finally, since $l_{\exp (-s X)} \circ r_{\exp (s X)}$ is conjugation by $\exp (-s X)$ we obtain for $t=0$

$$
\begin{equation*}
\psi(0)=d\left(\varphi \circ l_{\exp (-s X)} \circ r_{\exp (s X))}\right)_{e}(Y)=d \varphi_{e}(\operatorname{Ad}(\exp (-s X)) Y) \tag{7}
\end{equation*}
$$

by the chain rule together with the definition of $\operatorname{Ad}(x)$ as the differential of conjugation by x.

We finish the proof of (3) by inserting (7) into (6) into (5) into (4).

